Bir Eşitsizlik Üzerine

İ. Ferit Öktem

Bu yazımızda

\begin{equation}\label{1} P_n = \prod_{k=1}^n \Big( 1 – \frac{1}{2k}\Big) \hspace{2cm} (1)\end{equation}

çarpımının (Bkz. Matematik Dünyası C:1, S:1, A5)

\[\frac{1}{\sqrt{\pi(n + \frac{1}{2})}} < P_n < \frac{1}{\sqrt{\pi n}}\hspace{2cm} (2)\]

eşitsizliğini sağladığını göstermek istiyoruz.

Önce

\[\prod_{k = 1}^n (2k -1) = (2n – 1)!!, \prod_{k=1}^n (2k) = (2n)!!\hspace{2cm} (3)\]

tanımlarını kullanarak

\[P_n = \frac{(2n – 1)!!}{(2n)!!}\hspace{2cm} (4)\]

yazabiliriz. Şimdi, \(n\) negatif olmayan bir tamsayı olmak üzere,

\[I_n = \int_0^{\frac{\pi}{2}} \sin^n x\, dx \hspace{2cm} (5)\]

integralini gözönüne alalım:

\[I_0 = \frac{\pi}{2},\,\, I_1 = 1,\,\, I_n = \frac{n-1}{n}I_{n-2}\,\,\,\, (n>1)\hspace{2cm} (6)\]

bağıntılarından $n\ge 1$ için

\[I_{2n – 1} = \frac{1}{2n}\frac{(2n)!!}{(2n-1)!!}, \;\; I_{2n} = \frac{\pi}{2}\frac{(2n – 1)!!}{(2n)!!},\]

\[I_{2n+1} = \frac{1}{2n + 1}\frac{(2n)!!}{(2n-1)!!}\hspace{2cm} (7)\]

olur. Öte yandan

\[ \sin^{2n +1} x < \sin^{2n} x < \sin^{2n -1}x \;\; (0 < x < \frac{\pi}{2}) \hspace{2cm} (8) \]

ve (5) ten dolayı

\[ I_{2n +1} < I_{2n}< I_{2n – 1} \hspace{2cm} (9)\]

eşitsizlikleri geçerlidir. Böylece (4), (7) ve (9) sonucu

\[ \frac{1}{(2n+1)P_n} < \frac{\pi}{2}P_n < \frac{1}{2nP_n}\hspace{2cm} (10) \]

bulunur. (10) un her yanını $\frac{2}{\pi}P_n$ ile çarptıktan sonra karekök alınırsa (2) eşitsizlikleri elde edilir.

Bu eşitsizliklerin bir sonucu olarak

\[ P_n = \frac{1}{\sqrt{\pi(n+\theta_n)}},\;\; 0 < \theta_n < \frac{1}{2} \hspace{2cm} (11)\]

koşullarını sağlayan bir $\theta_n$ sayısının varlığı ve

\[\lim_{n \to \infty} \sqrt{n} P_n = \frac{1}{\sqrt{\pi}}\hspace{2cm} (12)\]

bağıntısı (Wallis formülü) de ispatlanabilir.

Not: Bu yazı Matematik Dünyası Dergisi arşivinden siteye eklenmiştir. Yazı ilk olarak derginin 1991 yılı 3. sayısında yer almıştır. Matematik Dünyası arşivi titiz bir çalışma ile çevrim içi platformlarda yeni okuyucularıyla buluşuyor. Bu yazıyı burada okunabilir hale getiren tüm gönüllü arşiv ekibimize teşekkür ediyoruz. Yazıyı PDF olarak okumak için PDF arşivine buradan ulaşabilirsiniz.

- Son sayıyı sipariş vermek için tıklayın. -Newspaper WordPress Theme

Son sayıdan

Matematik Dünyası’ndan (110. Sayı, 2021)

Matematik Dünyası'ndan yeni bir merhaba, Bir yıl aradan sonra MD’nin yeni sayısıyla karşınızdayız. Aradan geçen zaman içinde derginin editörlerinde değişiklikler oldu. MD yine yeni bir...

Toplumun Eylem Matematiği: Ahmet Hamit Dilgan

Yazar: Alp Eden Yazımda daha çok bir bilim tarihçisi olarak bilinen Ahmet Hamit Dilgan’ın daha az tanınan bir yönünü, matematiğin eğitimine ve yaygınlaşmasına olan katkılarını...

Cem Yalçın Yıldırım and The Origin Of the GPY Method

Our current state of knowledge It is now known and proven that there are always primes differing by 246 or less no matter how far...